-
工业生产活动的目标是利用原料生产产品,从而产生利润。原料经过一系列加工过程,包括物理反应和化学反应,最终形成产品,生产的理想状态是原料到产品的转换率是确定的,工厂想生产多少产品就知道需要准备多 ..
-
单元格 A1 里是一个表格,我在单元格 A3 里使用 $select * from {A1.import@t()} where Material = ‘DC02C010C00’ 可以查询出图中 ..
-
对于时间序列来说,比较两个时间序列的相似性是一个很普遍的任务。通俗来说,两个时间序列的数据越接近,它们的图像“长得越像”,两个时间序列就越相似,而形容它们“长得像”的程度就是相似度,用sm表示 ..
-
一、问题提出 时间序列数据主要由电力行业、化工行业、气象行业、地理信息等各类型实时监测、检查与分析设备所采集、产生的数据,这些工业数据的典型特点是:产生频率快(每一个监测点一秒钟内可产生多条数 ..
-
时间序列中,如果某一时段内的数据变化不大,我们称之为稳定段;某一时段内数据快速上升或者下降,我们称之为不稳定段;不稳定段通常是前一段稳定段的结束,也是后一段稳定段的开始,发现不稳定段可以确定每 ..
-
RT,看文档似乎这两个是等效的,但结果却不同,想请教一下原因。 [图片] [图片] [图片]
-
-
我们已经实现发现单形状曲线段的方法,有时我们还需要发现两种形状甚至更多形状连续出现的复合形状,比如先下降再平稳、先上升再平稳再下降等等。 还以之前的时间序列为例,找出先下降再平稳的曲线段。下图 ..
-
1. 筛选取值在[90,95]之间的曲线段 不需要计算特征指数,也不用投射参数。 参数设置: 特征指数名组合Nm Nm=[“Value”] 取值范围记Ag Ag=[[90,95]] 形状长度范 ..
-
测试用例如下图: [图片] 注意事项: (1)fork 40 个线程; (2)每个线程运行 100 次; (3)数据库测试表数据在 1w 以上; (4)mongo_shell 指定返回游标; ..
-
有了前面的准备工作,我们就可以实现形状发现任务了。 先设定参数: 特征指数名组合记为Nm Nm=[f1,f2,…,fm] 其中fi是第i个特征指数名。 特征指数组合对应的取值范围记为Ag。 A ..
-
利用时间序列X计算出相关的特征指数,组成序表T: X f(1) f(2) … x1 f(1)1 f(2)1 … x2 f(1)2 f(2)2 … … … … … xn f(1)n f(2)n ..
-
时间序列X: X= [x1,x2,…,xn] 特征指数是表征时间序列走势的原子化特征,数学方法有无数种,本着奥卡姆剃刀原理,即用简单的方法能解决的问题就不复杂化。这里要介绍的特征指数的计算方法 ..
-
时间序列的走势在一定程度上能反应实际生产状况,比如走势平稳的曲线是正常情况,快速上升或者下降意味着生产状况不稳定,可能有异常情况发生。平稳、上升、下降在时间序列走势图中表现为某种形状,从历史数 ..
-
多维空间中的点可能是“聚集”的,也可能是散布在空间中的,怎么衡量空间中点分布的“离散程度”呢? [图片][图片] 观察这两幅图,第一幅图有明显的聚集效应,多数点“聚集”在下方,少数点散布在上方 ..
-
单维度异常发现算法能够得到单个时间序列的报警强度,通过某种方法对多个维度的报警强度进行“聚合”,就能得到多维时间序列的报警强度。我们仍然介绍简单朴素的方法来完成“聚合”,那就是对各维度加权平均 ..
-
上一节中介绍的异常发现方法是将“聚集”在一起的点视为常见点,“分散”的点视为异常点,“聚集”通常是无规则的,只要在多维空间中距离近的点就算“聚集”。不过,有时我们会发现某些场景的“聚集”会有强 ..
-
测试环境:操作系统 win10,mongo4.0 mongodb 最大连接数300,current 数值 +available 数值就是当前 mongodb 最大连接数 [图片] fork 4 ..
-
[图片] 脚本主要解释:ipport 是 5 个 mongodb 的 ip 和端口连接。从每个 mongo 读取 10 条数据(排序好的),再通过 A6 进行合并,合并之后再取 10 条数据出 ..
-
4.2.1 数据标准化 多维时间序列中各维度的量纲可能不同,计算距离前需要将各维度标准化到同样的量纲条件下,这种将不同量纲的数据转换成统一量纲的数据转换方法称为数据标准化。统计学有很多种数据标 ..
-
工业生产中,可能会有两个或者多个仪表协同工作的情况,如温度和压力,阀门开度和流量等。把多个时间序列形成的序列称为多维时间序列,用矩阵X表示。 [图片] X是m维时间序列,它的第i行是m个时间序 ..
-
根据这个帖子:[链接] slimerjs 运行测试 js 无反应,具体原因是什么? [图片]
-
原值、变化率、离散度等衍生序列都可以用来发现异常,相应的可以得到报警强度序列,将这些报警强度序列通过某种方式整合起来,使其能够表征最终的报警激烈强度,整合后的报警强度序列称为综合报警强度,用W ..
-
【本篇可结合 https://c.raqsoft.com.cn/article/1699245988919 阅读】 目前网上有很多涉及 esProc SPL 的帖子,有方案介绍、测试报告、案例 ..
-
线性、指数、对数、三角函数,这几类衰减函数都有各自的特点,详见下表: [图片]