SQL 和 SPL 的有序运算对比
【摘要】
有序运算是指按照一定的次序对有序集合的成员进行计算。SQL 和 SPL 是大家比较熟悉的程序语言,本文将探讨对于有序运算问题,这两种语言的解决方案和基本原理。如何简便快捷的处理有序运算,这里为你全程解析,并提供 SQL 和 SPL 示例代码。SQL 和 SPL 的有序运算对比
使用过 SQL 或 SPL 的朋友对计算字段都不会陌生,比如 firstname+lastname,year(birthday),这些计算字段属于行内计算。不管表达式里用到的是单个字段,还是多个字段,使用的数据都在当前记录行内。有行内计算,对应的也就有跨行计算,如:第一名和第二名的差距;从 1 月到当前月份累计的销售额。按照成绩有序,才会有第一名、第二名的说法,累计操作同样基于有序数据,从第几个累加到第几个,这些基于有序集合的计算,就属于有序计算。行内计算关心的是每条数据自身的情况,而跨行的有序计算则关心有序数据的变化情况。
一.相邻记录引用
简单常见的有序计算是相邻记录引用,也就是在计算中要引用某种次序下的相邻记录。比如下面这些问题:
1、 股价每天的涨幅是多少(比上期)
按日期排序时,引用上一天的股价。
2、 前一天 + 当天 + 后一天的平均股价是多少(移动平均)
按日期排序时,引用前后两天的股价。
3、 多支股票数据,计算每支股票内的每日涨幅(分组内的比上期)
按股票分组,组内按日期排序,引用上一天股价。
接下来通过这几个例子研究下 SQL 如何实现这类有序计算。
1. SQL的解决方案
早期 SQL 的解决方案
早期的 SQL 没有窗口函数,引用相邻记录的方法是用 JOIN 把相邻记录拼到同一行。
问题 1 写出来是这样的:
SELECT day, curr.price/pre.price rate
FROM (
SELECT day, price, rownum row1
FROM tbl ORDER BY day ASC) curr
LEFT JOIN (
SELECT day, price, rownum row2
FROM tbl ORDER BY day ASC) pre
ON curr.row1=pre.row2+1
即将本表和本表做 JOIN,把前一天和当天作为连接条件,这样即可将前一天的股价和当天股价连接到同一行中,再用行内计算得到涨幅。一个很简单的问题必须使用子查询才能解决。
再看问题 2,计算股价的移动平均,(前一天 + 当天 + 后一天)/3,同样是使用 JOIN 实现:
SELECT day, (curr.price+pre.price+after.price)/3 movingAvg
FROM (
SELECT day, price, rownum row1
FROM tbl ORDER BY day ASC) curr
LEFT JOIN (
SELECT day, price, rownum row2
FROM tbl ORDER BY day ASC) pre
ON curr.row1=pre.row2+1
LEFT JOIN (
SELECT day, price, rownum row3
FROM tbl ORDER BY day ASC) after
ON curr.row1=after.row3-1
多取一天,就多 JOIN 一个子查询,试想,如果要计算前 10 天 ~ 后 10 天的移动平均,那需要写 20 个 JOIN,这种语句能写死人。
再看更复杂一些的问题 3,股价表里有多支股票时,增加 code 字段区分不同的股票,那它的涨幅就要限定在某支股票的分组内:
SELECT code, day ,currPrice/prePrice rate
FROM(
SELECT code, day, curr.price currPrice, pre.price prePrice
FROM (
SELECT code, day, price, rownum row1
FROM tbl ORDER BY code, day ASC) curr
LEFT JOIN (
SELECT code, day, price, rownum row2
FROM tbl ORDER BY code, day ASC) pre
ON curr.row1=pre.row2+1 AND curr.code=pre.code
)
这里着重看两个地方:单表排序时,一定要增加股票代码,形成组合排序 code,day,code 还必须要在前面,这不难理解,先把一支股票的数据放在一起,然后这支股票组内数据再按照日期排序;数据排序好了还不算完,连接条件里也要加上股票代码相等,否则两个相邻的不同股票数据挨着,也会计算涨幅,但这是没意义的脏数据。
引入窗口函数
从 2003 年起,SQL 标准中引入了窗口函数,带来了序的概念。有序计算变得容易了许多。上面的三个例子写起来就简单多了。
问题 1,比上期。为了看清楚,把窗口函数拆成多行缩进,方便理解:
SELECT day, price /
LAG(price,1)
OVER (
ORDER BY day ASC
) rate
FROM tbl
LAG 函数实现引用前面的记录。函数里的参数表示找前面第 1 条的 price,OVER 是窗口函数 LAG 的子句(每个窗口函数都有 OVER 子句),它的作用是定义待分析的有序集合,这个例子很简单,待分析集合按照日期有序。
问题 2,移动平均。可以用取前边函数 LAG+ 取后面函数 LEAD 实现,但这里用 AVG 函数更可取,它能支持一个范围内(比如前后十条)的平均,LAG/LEAD 每次只能取到一个值:
SELECT price,
AVG(price) OVER (
ORDER BY day ASC
RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING
) movingAvg
FROM tbl;
这样取前后 n 条也容易了,只要改变 RANGE BETWEEN 里的范围。
问题 3,分组内的有序计算。每支股票的所有股价是一个分组,窗口函数对它也做了支持:
SELECT code, day, price /
LAG(price,1)
OVER (
PARTITION BY code
ORDER BY day ASC
) rate
FROM tbl
OVER 下的 PARTITION BY 子句描述了怎么划分分组,LAG 操作会限定在每个组内。这比之前的 JOIN 做法好了很多,描述分组很直观。;而 JOIN 做法是对数据做组合排序,虽然实际上也是分组的效果,但不容易理解到位。
2. SPL的解决方案
问题前面解读过了,先看下问题 1 的 SPL 脚本:
A |
|
1 |
=T("tbl.txt") |
2 |
=A1.sort(day).derive(price/price[-1]:rate) |
A1: 从数据文件导入股市数据表
A2: 使用函数 sort 按日期排序后,计算每天股价与前日的涨幅。其中 price[-1] 表示前日的价格。函数 derive 用于为序表增加计算列。
SPL 同样也支持从数据库中读取数据表,比如 A1 可以改为:
A |
|
1 |
=connect("db").query("select * from tbl") |
A1 的计算结果是一个序表,SPL中的序表是有序集合,集合的成员是有次序的,这一点与Java等高级语言中的数组类似。可以通过序号来访问成员,是有序集合的基本功能。所以在处理有序运算问题时,有序集合具有天然的优势。访问前一个交易日的数据,对于 SQL 来说比较复杂,需要子查询或者窗口函数的帮助。但是对于有序集合来说,只要访问当前序号 -1 的成员就可以了。不但运算效率更高,理解起来也更加简单。
我们继续看一下问题 2 和问题 3 的解决方案。问题 2:
A |
|
1 |
=T("tbl.txt").sort(day).derive(avg(price[-1:1]):movingAvg) |
导入股市数据表,并按日期排序。计算当日、前一日和后一日的股价平均值。其中 price[-1:1] 表示从前一日到后一日的股价。
问题 3:
A |
|
1 |
=T("tbl.txt").sort(day).group(code).(~.derive(price/price[-1]:rate)).conj() |
导入股市数据表,并按日期排序。使用函数 group 根据股票代码分组。每支股票分别计算当日与前一日股价的涨幅。其中符号 ~ 用来表示当前成员。
使用 SPL 来解决问题 2 和问题 3 时,仍然是通过相对的位置序号来访问相邻成员。解题思路与问题 1 类似,问题 2 只是从访问前 1 天变成访问连续 3 天,问题 3 引入了多支股票所以先按股票代码进行了分组。
二.序号定位
1. SQL的解决方案
有序集合里找相邻记录,属于相对位置定位,有时我们还会找绝对位置的记录,比如计算每天股价与第一天上市价的涨跌差距:
SELECT day, price-FIRST_VALUE(price) OVER (ORDER BY day ASC) FROM tbl
或者,已经知道第 10 天是最高股价,计算出每天和它的差距:
SELECT day, price-NTH_VALUE(price,10)OVER (ORDER BY day ASC) FROM tbl
再看复杂点的情况,要定位的序号事先未知,需要根据数据计算出来:
4、 股票按照股价排序,取出中间位置的股价(中位数)
先看简单的单支股票的解法,按照股价排序后,中间位置还不知道在哪,这时得根据实际股票数据的数量算出中间位置:
SELECT *
FROM
SELECT day, price, ROW_NUMBER()OVER (ORDER BY day ASC) seq FROM tbl
WHERE seq=(
SELECT TRUNC((COUNT(*)+1)/2) middleSeq FROM tbl)
FROM 里的子查询用 ROW_NUMBER() 给每行生成序号,WHERE 里的子查询计算出中间序号。这个 SQL 里有两个注意事项,一是不能直接针对第一个子查询内部过滤,因为 WHERE 里不能使用同级 SELECT 中的计算字段,这是 SQL 执行顺序导致的;二是 WHERE 里的子查询结果一定是一行一列的单个值,这时能直接把它看成单个值和 seq 做等值比较。
计算多支股票中位数的 SQL 如下:
SELECT *
FROM
(SELECT code, day, price,
ROW_NUMBER() OVER (PARTITION BY code ORDER BY day ASC)
FROM tbl) t1
WHERE seq=(
SELECT TRUNC((COUNT(*)+1)/2) middleSeq
FROM tbl t2
WHERE t1.code=t2.code
)
除了增加窗口函数里的PARTITION BY,还要注意计算中间位置时,查询条件也要限定在一支股票内。
5、 每支股票最高价格日与前一天相比涨幅是多少
这个问题需要两种排序方式组合起来定位,还是先看单支股票:
SELECT day, price, seq, rate
FROM (
SELECT day, price, seq,
price/LAG(price,1) OVER (ORDER BY day ASC) rate
FROM (
SELECT day, price,
ROW_NUMBER ()OVER (ORDER BY price DESC) seq
FROM tbl
)
)
WHERE seq=1
连续两层子查询都通过窗口函数给原始数据增加有用信息,ROW_NUMBER 把价格从高到低标上序号,通过 LAG 计算出每天的涨幅,最后过滤出价格最高的一天就可以了(seq=1)。
注意过滤出最高价格不能先于涨幅的计算,最高价格的前一天还不知道在哪里,先过滤掉,后面就算不出来涨幅了。
前面已经有几个针对分组做有序计算的例子了,这个题就不给出最终答案了,读者有兴趣可以自己尝试写写怎么得出多支股票最高价时的涨幅。
2. SPL的解决方案
问题 4 要取出股价的中位数,SPL 脚本如下:
A |
|
1 |
=T("tbl.txt").sort(price).group(code).(~((~.len()+1)\2)) |
导入股市数据表,并按股价排序。根据股票代码分组后,每支股票分别取出股价中位数。
解题思路是,股票代码相同的股票分为一组并按股价排序,接下来每支股票的分组子集按照中间位置的序号访问成员就可以了。
我们再来看一下问题 5,每支股票最高价格日与前一天相比涨幅是多少。SPL 脚本如下:
A |
|
1 |
=T("tbl.txt").sort(day).group(code).((p=~.pmax(price),~.calc(p,price/price[-1]))) |
导入股市数据表,并按日期排序。根据股票代码分组。使用函数 pmax 定位股价最大值所在位置,再使用函数 calc 在指定位置上进行计算。
SPL 处理定位问题通常来说分为两步:首先获取成员或者满足条件的位置(序号),然后我们就可以根据序号进行访问或计算了。我们并不需要自己来实现定位,SPL 提供了很多定位函数,用于查找成员或表达式在序表中的位置。
三.有序分组
1. SQL的解决方案
有序信息还可以用于分组。看这个例子:
6、 一支股票最多连续上涨过几天。
这个问题有点难想了。基本的思路是把按日期有序的股票记录分成若干组,连续上涨的记录分成同一组,也就是说,某天的股价比上一天是上涨的,则和上一天记录分到同一组,如果下跌了,则开始一个新组。最后看所有分组中最大的成员数量,也就是最多连续上涨的天数。
这种分组比较特殊,和记录的次序有关,而 SQL 里只支持等值分组,就需要把这种有序分组转换成常规的等值分组来实现。过程是这样:
1) 按日期排序,用窗口函数取出每天的前一天股价;
2)对比,如果上涨了的标记为 0,下跌的标记为 1;
3)累加当前行以前的标记,累加的结果类似 0,0,1,1,1,1,2,2,3,3,3…,这些就是我们需要的组号了;
4)现在可以用 SQL 常规的等值分组了。
完整的 SQL 写出来是这样:
SELECT MAX(ContinuousDays)
FROM (
SELECT COUNT(*) ContinuousDays
FROM (
SELECT SUM(RisingFlag) OVER (ORDER BY day) NoRisingDays
FROM (
SELECT day, CASE WHEN price>
LAG(price) OVER (ORDER BY day) THEN 0 ELSE 1 END RisingFlag FROM tbl
)
) GROUP BY NoRisingDays
)
这个题已经不简单了,嵌套了四层的子查询。细追究下解题思路,就得说 SQL 语言与 JAVA/C 语言的不同特点,SQL 是集合化语言,提供的计算直接针对集合,没有显式可精细控制的循环操作,更没有过程中的临时变量可利用,这导致解决问题的思路和人的自然思路差异比较大,得变换思路,通过几个规整的集合计算实现出等价效果;用非集合化的语言 JAVA 或 C,比较贴合自然思路,循环处理每个数据,过程中产生新组或加入旧组很直观。当然 JAVA 等语言基本上没有提供集合运算,也是各有特长。
合理的查询需求在复杂程度上不会止步:
7、 连续上涨超过三天的股票有哪些?
这个问题题是有序分组 + 分组子集,最后再加个常规的分组、聚合值过滤(HAVING)。通过上个查询的思路得到每支股票的所有上涨组,最外面套上分组运算得出每支股票的最大上涨天数,并用聚合后的条件运算 HAVING 过滤出上涨大于三天的:
SELECT code, MAX(ContinuousDays)
FROM (
SELECT code, NoRisingDays, COUNT(*) ContinuousDays
FROM (
SELECT code,
SUM(RisingFlag) OVER (PARTITION BY code ORDER BY day) NoRisingDays
FROM (
SELECT code, day,
CASE WHEN price>
LAG(price) OVER (PARTITION BY code ORDER BY day)
THEN 0 ELSE 1 END RisingFlag
FROM tbl
)
) GROUP BY NoRisingDays
)
GROUP BY code
HAVING MAX(ContinuousDays)>=3
这个 SQL 已经很难看懂了。
2. SPL的解决方案
我们先看一下问题 6,一支股票最多连续上涨过几天。SPL 脚本如下:
A |
|
1 |
=T("tbl.txt").sort(day).group@o(price>price[-1]).max(~.len()) |
导入股市数据表,并按日期排序。使用函数 group 的选项 @o,根据股价是否上涨进行分组。分组时只和相邻的对比,当股价是否上涨发生变化时产生新组。最后统计连续上涨的天数。
解题思路是,统计出股票每一次连续上涨的天数,再从中选出最长的一组。SPL 不仅语法简单,更重要的是逻辑清晰,只要按思路顺序编写就可以了。SQL 和 SPL 处理有序分组问题的差别如此巨大,本质上因为 SQL 以无序集合为基础,而 SPL 的序表是有序集合,更擅长于有序计算。除此以外,SPL 还提供了大量的函数,从而更加降低了使用难度。
问题 7,连续上涨超过三天的股票有哪些。SPL脚本如下:
A |
|
1 |
=T("tbl.txt").sort(day).group(code).select(~.group@o(price>price[-1]).max(~.len())>3).(code) |
导入股市数据表,并按日期排序。先按照股票代码分组,再按照问题 6 的方法,计算出每支股票连续上涨的最大天数,最后选出连续上涨超过 3 天的。
这个问题的 SQL 解决方案已经很难看懂了,但是 SPL 脚本还是很简单的。与问题 6 相比,仅仅是多了一个按股票代码分组的过程。SPL 的分组与 SQL 的分组有着本质上的区别。SQL 的分组除了只能得到分组汇总的结果,查询时也只能选出分组时使用的字段和聚合结果。而 SPL 使用直观的记录分组,比如本例中,将相同股票代码值的记录分在一组,分组子集中保留了数据的全部信息。正因为如此,我们才可以对这些分组子集进行下一步的计算。例如在本例中,我们可以对着每个分组子集再次进行有序分组。
总结
从上面的讨论可以看出。没有窗口函数 SQL 对有序运算极端不适应(目前还有些数据库不支持窗口函数),理论上可以写,但实际的麻烦程度基本上等同于不能用。在引入窗口函数后,有序计算得到了很好的改善,不过对于稍复杂情况还是相当麻烦。
这个原因在于 SQL 的理论基础,也就是关系代数,是以无序集合作为基础的,仅靠窗口函数这种打补丁的办法并不能从根本上解决问题。
其实,计算机语言中的数组(即集合)是天然有序的(有序号),在 Java/C++ 这些高级语言的思路下很容易理解和实现有序计算,但是这类语言的集合计算能力又比较弱,实现上面这些问题的代码也不短(虽然有序计算的解题思路难度并不大)。
esProc 的 SPL 可以很好地解决这一问题。esProc 是专业的数据计算引擎,基于有序集合设计,同时提供了完善的集合运算,相当于 Java 和 SQL 优势的结合。在 SPL 的支持下,有序集合计算会非常容易。
SPL 中提供了跨行引用的语法,也支持有序分组等运算,有了这些后,上面那些问题只要按自然思维去组织计算逻辑,一行代码就能优雅地写出来。
SQL 与 SPL 对比系列:
SQL 和 SPL 的集合运算对比
SQL 和 SPL 的选出运算对比
SQL 和 SPL 的有序运算对比
SQL 和 SPL 的等值分组对比
SQL 和 SPL 的非等值分组对比
SQL 和 SPL 的有序分组对比
SQL 和 SPL 的一对一和一对多连接对比
SQL 和 SPL 的多对一连接对比
SQL 和 SPL 的多对多连接对比
SQL 和 SPL 的基本静态转置对比
SQL 和 SPL 的复杂静态转置对比
SQL 和 SPL 的动态转置对比
SQL 和 SPL 的递归对比
英文版