数据准备脚本:Python Pandas OR esProc SPL?
做数据分析和人工智能运算前常常需要大量的数据准备工作,也就是把各种数据源以及各种规格的数据整理成统一的格式。因为情况非常复杂多样,很难有某种可视化工具来完成此项工作,常常需要编程才能实现。
业界有很多免费的脚本语言都适合进行数据准备工作,其中 Python Pandas 具有多种数据源接口和丰富的计算函数,受到众多用户的喜爱;esProc SPL 作为一门较新的数据计算语言,在语法灵活性和计算能力方面也很有特色,下面对两者进行多方面的比较。本文重点比较数据的解析、清洗、计算、输出等日常任务,不涉及人工智能等后续应用或高性能计算等特殊场景。
语言特征
编程范式
Python 是通用开发语言,支持多范式编程,包括完整的面向对象和面向函数,但因为大量 Python 用户不是专业的应用程序员,很少用到这两种现代复杂的编程范式,最常用的反而是古老简单的面向过程编程范式。
SPL 专用于结构化数据计算,也支持常见的三种范式。SPL 对面向对象的概念进行了大幅简化,有对象的概念,可以用点号访问属性并进行多步骤计算,但没有继承重载这些内容。SPL 对函数式编程也进行了简化,其 Lambda 表达式甚至比 SQL 更加简单易用,适合非专业应用程序员。
语言整体性
Pandas 不是 Python 的原生类库,而是基于 numpy 开发的第三方类库(numpy 本身也是第三方类库), 没有参与 Python 的统一设计,也无法获得 Python 的底层支持,导致语言的整体性不佳,基础数据类型尤其是结构化数据对象(DataFrame)的专业性不强,影响编码效率和计算效率。
SPL 是原生类库,可以自底向上设计统一的语法、函数、参数、接口,以及基础数据类型尤其是结构化数据对象(序表),语言的整体性更好。
运行模式
Python 是用 C 开发的解释型语言,SPL 是用 Java 开发的解释型语言,两者都可以自动推断数据类型,并据此提供了灵活方便的语法。解释型语言的性能一般不如编译型,但 SPL 内置大量时间复杂度更低的基础运算,结构化计算的性能经常能超过编译型语言。Pandas 由于语言整体性较差,其性能不如 Python 原生类库。
IDE
Python 和 SPL 都有图形化的 IDE,包括完整的调试功能,便利的结构化数据对象观察功能,直观的代码块 / 作用域缩进功能。Python 采用空格 /tab 缩进,SPL 采用类 Excel 的表格式缩进。
学习难度
Pandas 资料丰富,入门的学习难度较低。但如果要深入开发,就必须学习完整的面向对象编程和函数式编程,难度陡然提高。
SPL 刻意简化了对象的概念和函数式编程的接口,无论入门学习还是深入开发,难度都不高。但涉及到高性能计算时需要学习较多特有的算法,难度也会提高。
代码量
Pandas 库函数丰富,实现简单的数据准备任务时只需单独使用自己库函数,代码量较低。但如果想实现较复杂的数据准备任务,就要大量使用 Python 原生类库和第三方类库,由于 Pandas 的语言整体性不佳,难度会陡然增加,代码量也水涨船高。
SPL 库函数丰富,语言整体性好,无论简单任务还是复杂任务,代码量都不多。
数据源
数据源种类
Pandas 支持多种数据源,包括:
文本数据文件,包括 TAB 分隔的 txt、逗号分隔的 csv,也可自定义其它分隔符。
固定宽度文件fwf,
各类关系型数据库,
Excel,
Json,
XML,
Restful、WebService,
html 抓取,
sas,
spss,
stata,
列存格式Parquet,
列存格式ORC,
Google BigQuery,
科学数据HDF,
数据框feather,
剪贴板里的结构化数据,
私有格式pickle。
SPL支持的数据源也很多,包括:
文本数据文件,包括 TAB 分隔的 txt、逗号分隔的 csv,也可自定义其它分隔符,
固定宽度文件fwf,
各类关系型数据库,
Excel,
Json,
XML,
Restful、WebService,
html 抓取,
HBase,
HDFS,
Hive,
Spark,
Elasticsearch,
MongoDB,
Kafka,
R2dbc,
FTP,
Cassandra,
DynamoDB,
influxDB,
Redis,
SAP,
剪贴板里的结构化数据,
私有格式btx、ctx。
读写数据库
用SQL查询数据库,用csv文件更新数据库。Pandas:
conn = create_engine('mysql+pymysql://root:password@localhost:3306/testdb')
df_read = pd.read_sql_query('select * from product', conn)
data = pd.read_csv("d:/Orders.csv")
data.to_sql('testdf', conn, index=False)
conn.dispose()
简单读写数据库时,Pandas 代码足够优雅。
SPL:
A |
|
1 |
=connect("com.mysql.jdbc.Driver","jdbc:mysql://localhost:3306/testdb?user=root&password=password") |
2 |
=A1.query("select * from product") |
3 |
=T("d:/Orders.csv") |
4 |
=A1.update(A3, testdf; ORDERID) |
5 |
=A1.close() |
SPL代码也很简单,整体逻辑与Pandas类似。区别在于,SPL可以把数据源信息写在配置文件里,代码里只要简单引用数据源名,具体来说,A1可以写成:connect("myDB")
读写文本文件
规则文本:读取csv文件,简单计算后写入新csv。Pandas:
data = pd.read_csv("d:/Orders.csv")
data['OrderDate']=pd.to_datetime(data['OrderDate'])
result=data.groupby(data['OrderDate'].dt.year).agg({'Amount':[len,np.sum]})
result.to_csv("d:/resultP.csv")
Pandas 代码很简洁,但仍有不足之处,一是不能自动解析日期时间类型;二是计算代码里大中小括号都有,既有表达式又有字符串,有明显的可优化之处,语言整体性不佳。
SPL 实现相同的功能:
A |
|
1 |
=T("d:/Orders.csv") |
2 |
=A1.groups(year(OrderDate);count(1),sum(Amount)) |
3 |
=file("d:/resulS.csv").export@t(A2) |
SPL代码也很简洁,且可自动解析日期时间类型,可以只用一种括号,可以只用表达式,语言整体性极佳。
不规则的文本:每三行对应一条记录,其中第二行含三个字段(集合的成员也是集合),将该文件整理成规范的结构化数据对象。Pandas:
data = pd.read_csv("d:/threeLines.txt",header=None)
pos_seq=[i//3 for i in range(len(data))]
def runSplit(x):
f123=x.iloc[1,0].split("\t")
f=[x.iloc[0,0],f123[0],f123[1],f123[2],x.iloc[2,0]]
return pd.DataFrame([f], columns=['OrderID','Client','SellerId','Amount','OrderDate'])
df=data.groupby(pos_seq).apply(runSplit)
df.reset_index(drop=True, inplace=True) #drop the Second Index
上述解析过程大体分三步:先将文本读为单字段的 DataFrame;再进行有序分组,即每三行分一组;最后循环每一组,将组内数据拼成单记录的 DataFrame,循环结束时合并各条记录,形成新的 DataFrame。
遇到不规则的文本时,Pandas 代码明显变复杂了,体现在以下几处。制造形如 [0,0,0,1,1,1,2,2,2…] 的分组依据时,需要用较复杂的 for 循环语句,先定义循环计数 i,再用 i 整除并取商。用 apply 循环各组数据时,需要定义一个处理组内数据的函数,这个函数超出了一句,因此不能用 Lambda 表达式来简化定义过程(连 Java 等编译型语言都没有这种限制)。取 DataFrame data 的成员时,只能用函数 iloc(或 loc),而取 list f123 的成员时,可以直接用下标,两者都是集合,但用法大相径庭,只因为 DataFrame 不是原生类库,语言整体性较差,无法像原生类库那样享受简洁的语法规则。DataFrame 本身有索引,apply 拼合多个 DataFrame 时,会加上第二层索引,需要手工去掉一层。
SPL:
A |
|
1 |
=file("D:\\split.csv").import@si() |
2 |
=A1.group((#-1)\3) |
3 |
=A2.new(~(1):OrderID, (line=~(2).split("\t"))(1):Client,line(2):SellerId,line(3):Amount,~(3):OrderDate ) |
SPL的解析逻辑和Pandas一样,但代码简单多了。制造分组依据时,不用复杂的for循环语句,而是用更简单的group(…)循环函数,且无需定义循环计数,#就是默认的循环计数(~是默认的循环变量)。用new循环各组数据时,也要定义一个处理函数,但SPL支持强大且简洁的Lambda表达式,可以把多句代码直接写在new里,不必像Python那样手工定义完整的函数结构。从SPL的任何集合类型(包括序表)取成员时,都可以直接用下标,语法简洁一致。new函数最后也要拼合多条记录,但不会生成无用的新索引。SPL代码更简洁,底层原因是原生类库的语言整体性更强。
多层数据
简单查询:Json文件的上层为销售员,下层为订单,查询出符合条件的所有订单。Pandas:
JsonStr=open('D:/data.json','r').read()
JsonObj=json.loads(JsonStr)
df=pd.json_normalize(JsonObj,['Orders'])
df['OrderDate']=pd.to_datetime(df['OrderDate'])
result=df.query('Amount>1000 and Amount<2000 and contains("business")')
Pandas 代码比较简单。要注意的是,dict、list 等 Python 基本数据支持泛型,且与 Json 的 object、array 类型天然对应,适合表示多层 Json(但不适合表达二维数据)。相反,DataFrame 适合表达二维数据,但同一列的数据类型不可变,不是真正的泛型,无法表达一般的多层 Json。DataFrame 不擅长表达多层 Json,需要用 json_normalize 函数将多层 Json 转为二维 DataFrame,才能进行后续计算,这说明 Pandas 的语言整体性不够好。
SPL:
A |
|
1 |
=file("d:/EO.json").read() |
2 |
=json(A1) |
3 |
=A2.conj(Orders) |
4 |
=A3.select(Amount>1000 && Amount<=2000 && like@c(Client,\"*business*\")) |
序表不仅支持二维数据,也支持多层数据。序表支持真正的泛型,与Json的object、array类型天然对应,适合表示多层数据。多层数据是二维数据的一般形式,序表同样擅长表达二维数据,不需要额外的标准化动作,直接就能计算。
访问层次节点:对Json分组汇总,分组字段既有上层字段,也有下层字段。Pandas:
JsonStr=open('D:/data.json','r').read()
JsonObj=json.loads(JsonStr)
df=json_normalize(JsonObj,record_path=['Orders'],meta=['Name','Gender','Dept'])
result=df.groupby(['Dept','Client']).agg({'Amount':['count','sum']}).reset_index()
result.columns = ['Dept','Clt','cnt','sum']
Pandas DataFrame 无法表达多层 Json,也就不支持按树形的层次关系直观地访问数据,只能用 normalize 把多层数据转为二维数据,再访问扁平的二维数据。
SPL:
A |
|
1 |
=json(file("d:/data.json").read()) |
2 |
=A1.groups(Dept,Orders.Client:Clt; count(Orders.OrderID):cnt, sum(Orders.Amount):sum) |
SPL序表可以表达多层Json,支持多层数据的计算,比Pandas简洁优雅。多层数据计算的特征之一,是提供方便的语法用来表达树形的层级关系,比如上面代码中的点号"Orders.Client",可以自由引用任意节点的数据。当层级较多结构复杂时,这种引用方式可以明显提升表达效率。
同理可知,Pandas和SPL虽然都可以计算XML,但DataFrame不支持多层XML,必须转为二维结构,表达能力不强;SPL序表可以表达并计算多层XML,代码更加优雅。
与Json的normalize函数不同,Pandas没有为XML提供方便的标准化函数,官方推荐用XML计算语言把多层XML计算为二维XML,常用的XML计算语言有XSLT和XPath。为了计算XML,还得学习第三方语言,学习成本过高,这里就不举例了。
SPL整体性极佳,可以用与Json类似的代码解析XML,与Json相同的代码计算XML,学习成本很低。比如对多层XML进行分组汇总:
A |
|
1 |
=file("d:\\xml\\emp_orders.xml").read() |
2 |
=xml(A1,"xml/row") |
3 |
=A2.groups(Dept,Orders.Client:Clt; count(Orders.OrderID):cnt, sum(Orders.Amount):sum) |
除了文件,Pandas和SPL也可以解析来自RESTful/WebService的多层数据,区别在于Pandas的语言整体性不佳,没有提供内置的RESTful/WebService接口,必须引入第三方类库。其中一种写法:
import requests
resp=requests.get(url="http://127.0.0.1:6868/api/emp_orders")
JsonOBJ=resp.json()
SPL 整体性较好,原生支持多层数据和 RESTful/WebService:
=json(httpfile("http://127.0.0.1:6868/api/emp_orders").read())
结构化数据对象
生成
Pandas的结构化数据对象是DataFrame,不仅可以由数据源生成,也可以直接构造,下面是常见的构造方法:
#用List构造,2个字段4条记录,行号(索引)是默认的0-3,列名是默认的0-1
df=pd.DataFrame([[1,'apple'],[2,'orange'],[3,'banana'],[4,'watermelon']])
#用Array构造
pd.DataFrame(numpy.array([[1,'apple'],[2,'orange'],[3,'banana'],[4,'watermelon']]))
#用Dict构造,列名是指定的one、two
pd.DataFrame({'one':[1,2,3,4],'two':['apple','orange','banana','watermelon']})
DataFrame 由多个 Series(列或字段对象)组成,下级是原子数据类型或对象(指针)。Pandas 没有真正的记录对象,这在某些场景下会带来方便,但也提高了理解难度,编码时缺乏直观感。使用 Pandas 时,经常用到 Python 的原生类库和第三类库 numpy 里的数据对象,包括 Set(数学集合)、List(可重复集合)、Tuple(不可变的可重复集合)、Dict(键值对集合)、Array(数组)等,这些数据对象都是集合,容易与 Series 和 DataFrame 发生混淆,互相转化困难,对初学者造成了不少困扰。除了外部类库的集合,Series 与自家的集合也容易发生混淆,比如分组后的集合 DataFrameGroupBy。这些都说明 Pandas 的语言整体性不强,缺乏来自底层的支持。
SPL 的结构化数据对象是序表,同样可以构造生成:
//先构造出结构,再用序列填入数据,行号是0-3,列名是指定的one、two
T=create(one,two).record([1,"apple",2,"orange",3,"banana",4,"watermelon"])
//先准备序列形式的数据(含列名),再构造生成
["one","two",1,"apple",2,"orange",3,"banana",4,"watermelon"].record(2)
//用序表T0的结构作为新序表的结构,再填入数据
T0.create(one,two).record([1,"apple",2,"orange",3,"banana",4,"watermelon"])
序表由多个 Record(记录对象)组成,下级是原子数据类型或对象(指针)。序表有真正的记录对象,大多数场景下易于理解,编码直观。Record 与单记录序表虽然本质不同,但业务意义相似,容易混淆,为了减少混淆,SPL 经过精心设计,使两者的外部用法保持一致,通常不必特意区分。SPL 只有两种集合,序列(类似 List)和序表,前者是后者的基础,后者是有结构的前者,序表分组后的集合是序列,两者关系清楚泾渭分明转化容易,学习和编码的成本都很低。可以看出来,SPL 可以从底层提供语法支持,整体性较好。
访问数据
Pandas DataFrame自带行号(从0开始)、字段号(列号)、字段名(列名),可以直接通过下标或字段名方便地访问记录:
#取行号列表,index相当于行号字段名
list(df.index)
#取第1条记录
df.iloc[1]
#区间取第1-3条记录(左闭右开)
df.iloc[1:4]
#步进(偶数位置)
df.iloc[1::2]
#倒数第2条(从1开始)
df.iloc[-2]
#用记录序号和字段序号取值
df1.iloc[1,0]
#用记录序号和字段名取值
df.loc[1,'two']
SPL 序表自带行号(从 1 开始)、字段号、字段名,可以通过下标和字段名方便地访问记录,这方面 SPL 和 Pandas 区别不大,用法都很方便:
//取行号列表,#是行号的字段名
T.(#)
//取第2条记录(可简写为T(2))
T.m(2)
//区间取第2-4条记录(左闭右闭)
T.m(2:4)
//步进(偶数位置)
T.step(2,2)
//倒数第二条(从1开始)
T.m(-2)
//用记录序号和字段序号取值
T.m(2).#1
//用记录序号和字段名取值
T.m(2).two
行号(下标)的本质是高性能地址索引,除了行号,Pandas 和 SPL 还提供了其他种类的索引,以及对应的查询函数,包括唯一值的哈希索引,有序值的二分查找索引。性能不是本文重点,且两者功能类似,这里就不多说了。
维护数据
修改指定位置的记录。Pandas:
df.loc[4,['NAME','SALARY']]=['aaa',1000]
Pandas 没有直接提供修改函数,而是用 Series 对象取出记录的部分字段,再用 List 去修改。Series 这里表示的是记录,但通常表示列,List 通常表示记录,但也可以表示列,这些规则初学者容易混淆。
SPL:
T.modify(5,"aaa":NAME,1000:SALARY)
SPL 直接提供了修改函数,符合初学者的常识。当然,SPL 也可以取出记录再修改,两种方法各自适合不同的场景。
在指定位置插入新记录。Pandas:
record=pd.DataFrame([[100,"wang","lao","Femal","CA", pd.to_datetime("1999-01-01"), pd.to_datetime("2009-03-04"),"HR",3000]],columns=df.columns)
df = pd.concat([df.loc[:2], record,df.loc[3:]],ignore_index=True)
Pandas 没有真正的记录对象,也没有直接提供插入记录的方法,间接实现起来较麻烦,先构造一条单记录的 DataFrame,再将原 DataFrame 按指定位置拆成前后两个 DataFrame,最后把三个 DataFrame 拼起来。很多易忽略的细节也要处理好,否则无法获得理想结果,比如构造记录时要保证字段名与原 DataFrame 相同,拼接新 DataFrame 时不能保留原来的行号。
SPL:
T.insert(3,100,"wang","lao","Femal","CA",date("1999-1-1"),date("2009-3-4"),"HR",3000)
SPL 对记录比较重视,直接提供了插入记录的方法,代码简洁易于理解。
添加计算列。Pandas:
today = datetime.datetime.today().year
df["Age"] = today-pd.to_datetime(df["BIRTHDAY"]).dt.year
df["Fullname"]=df["NAME"]+ " " +df["SURNAME"]
Pandas 没有提供添加计算列的函数,虽然实现起来问题不大,但添加多个列就要处理多次,还是比较麻烦。Pandas 的时间函数也不够丰富,计算年龄比较麻烦。
SPL:
T.derive(age(BIRTHDAY):Age, NAME+""+SURNAME:Fullname)
SPL 提供了添加计算列的函数,一次可以添加多个列,且时间函数更加丰富。
结构化数据计算
计算函数
Pandas内置丰富的库函数,支持多种结构化数据计算,包括:遍历循环apply\map\transform\itertuples\iterrows\iteritems、过滤Filter\query\where\mask、排序sort_values、唯一值unique、分组groupby、聚合agg(max\min\mean\count\median\ std\var\cor)、关联join\merge、合并append\concat、转置transpose、移动窗口rolling、shift整体移行。
Pandas没有专门的函数进行记录集合的交、并、差等运算,只能间接实现,代码比较繁琐。Pandas会为类似的计算提供多个函数,比如过滤,这些函数的主体功能互相覆盖,只是参数约定\输出类型\历史版本不同,学习时要注意区分。
SPL的计算函数也很丰富,包括:遍历循环.()、过滤select、排序sort、唯一值id、分组group、聚合max\min\avg\count\median\top\icount\iterate、关联join、合并conj、转置pivot。
SPL对记录集合的集合运算支持较好,针对来源于同一集合的子集,可使用高性能集合运算函数,包括交集isect、并集union、差集diff,对应的中缀运算符是^、&、\。对于来源不同的集合,可用merge函数搭配选项进行集合运算,包括交集@i、并集@u、差集@d。
除了集合运算,SPL还有以下独有的运算函数:分组汇总groups、外键切换switch、有序关联joinx、有序归并merge、迭代循环iterate、枚举分组enum、对齐分组align、计算序号pselect\psort\ptop\pmax\pmin。Pandas没有直接提供这些函数,需要硬编码实现。
有大量功能类似的函数时,Pandas 要用不同的名字或者参数进行区分,使用不太方便。而 SPL 提供了非常独特的函数选项,使功能相似的函数可以共用一个函数名,只用函数选项区分差别。比如,select 函数的基本功能是过滤,如果只过滤出符合条件的第 1 条记录,可使用选项 @1:
T.select@1(Amount>1000)
对有序数据用二分法进行快速过滤,使用 @b:
T.select@b(Amount>1000)
函数选项还可以组合搭配,比如:
Orders.select@1b(Amount>1000)
结构化运算函数的参数有些很复杂,Pandas 需要用选项或参数名来区分复杂的参数,这样易于记忆和理解,但代码难免冗长,也使语法结构不统一。比如左关联:
pd.merge(Orders, Employees, left_on='SellerId', right_on='EId', how='left', suffixes=['_o','_e'])
SPL 使用层次参数简化了复杂参数的表达,即通过分号、逗号、冒号自高而低将参数分为三层,不过这样会增加一些记忆难度。同样左关联:
join@1(Orders:o,SellerId ; Employees:e,EId)
层次参数的表达能力也很强,比如 join 函数里的分号用于区分顶层参数序表,如果进行多表关联,只要继续加分号就可以。Pandas 参数的表达能力就差多了,merge 函数里表示 DataFrame 的选项只有 left 和 right,因此只能进行两表关联。
Pandas 和 SPL 都提供了足够丰富的计算函数,进行单个函数的基础计算时,区别不算大。但实际工作中的数据准备通常有一定复杂度,需要灵活运用多个函数,且配合原生的语法才能实现,这种情况下,两者的区别就比较明显了。
同期比
先按年、月分组,统计每个月的销售额,再计算每个月比去年同月份的销售额的增长率。Pandas:
sales['y']=sales['ORDERDATE'].dt.year
sales['m']=sales['ORDERDATE'].dt.month
sales_g = sales[['y','m','AMOUNT']].groupby(by=['y','m'],as_index=False)
amount_df = sales_g.sum().sort_values(['m','y'])
yoy = np.zeros(amount_df.values.shape[0])
yoy=(amount_df['AMOUNT']-amount_df['AMOUNT'].shift(1))/amount_df['AMOUNT'].shift(1)
yoy[amount_df['m'].shift(1)!=amount_df['m']]=np.nan
amount_df['yoy']=yoy
分组汇总时,Pandas 很难像 SQL 那样边计算边分组,通常要先追加计算列再分组,这导致代码变复杂。计算同期比时,Pandas 用 shift 函数进行整体移行,从而间接达到访问“上一条记录”的目的,再加上要处理零和空值等问题,整体代码就更长了。
SPL:
A |
|
2 |
=sales.groups(year(ORDERDATE):y,month(ORDERDATE):m;sum(AMOUNT):x) |
3 |
=A2.sort(m) |
4 |
=A3.derive(if(m==m[-1],x/x[-1] -1,null):yoy) |
分组汇总时,SPL 可以像 SQL 那样边计算边分组,灵活的语法带来简练的代码。计算同期比时,SPL 直接用 [-1] 表示“上一条记录”,且可自动处理数组越界和被零除等问题,整体代码较短。
除了用 [x] 表示相对位置,SPL 还可以用 [x:y] 表示相对区间,比如股票的 3 日移动平均值:
T.derive(Amount[-2:0].avg():ma)
Pandas 也可以表示相对区间,但由于语言整体性不佳,无法从语法层面直接支持,所以提供了一个新函数 rolling。同样计算股票的 3 日移动平均值:
df['ma']=df['Close'].rolling(3, min_periods=1).mean()
贷款分期
根据多项贷款的基本信息(金额、期数、利息),计算每项贷款每一期的还款明细(当期还款额、当期利息、当期本金、剩余本金)。Pandas:
loan_data = ...... #省略loan_data的取数过程
loan_data['mrate'] = loan_data['Rate']/(100*12)
loan_data['mpayment'] = loan_data['LoanAmt']*loan_data['mrate']*np.power(1+loan_data['mrate'],loan_data['Term']) \ /(np.power(1+loan_data['mrate'],loan_data['Term'])-1)
loan_term_list = []
for i in range(len(loan_data)):
loanid = np.tile(loan_data.loc[i]['LoanID'],loan_data.loc[i]['Term'])
loanamt = np.tile(loan_data.loc[i]['LoanAmt'],loan_data.loc[i]['Term'])
term = np.tile(loan_data.loc[i]['Term'],loan_data.loc[i]['Term'])
rate = np.tile(loan_data.loc[i]['Rate'],loan_data.loc[i]['Term'])
payment = np.tile(np.array(loan_data.loc[i]['mpayment']),loan_data.loc[i]['Term'])
interest = np.zeros(len(loanamt))
principal = np.zeros(len(loanamt))
principalbalance = np.zeros(len(loanamt))
loan_amt = loanamt[0]
for j in range(len(loanamt)):
interest[j] = loan_amt*loan_data.loc[i]['mrate']
principal[j] = payment[j] - interest[j]
principalbalance[j] = loan_amt - principal[j]
loan_amt = principalbalance[j]
loan_data_df = pd.DataFrame(np.transpose(np.array([loanid,loanamt,term,rate,payment,interest,principal,principalbalance])),columns = ['loanid','loanamt','term','rate','payment','interest','principal','principalbalance'])
loan_term_list.append(loan_data_df)
loan_term_pay = pd.concat(loan_term_list,ignore_index=True)
上面代码用两层循环作为主体结构,先循环每项贷款,再循环生成该项贷款的每一期,然后将各期明细转置为 DataFrame,并追加到事先准备好的 list 里,继续循环下一项贷款,循环结束后将 list 里的多个小 DataFrame 合并为一个大 DataFrame。业务逻辑是比较清晰的,就是按公式计算各项数据项,但因为两层循环的结构比较复杂,数据类型的转换比较麻烦,导致代码显得冗长。
SPL:
A |
|
1 |
// 省略 loan_data 的取数过程 |
2 |
=loan_data.derive(Rate/100/12:mRate,LoanAmt*mRate*power((1+mRate),Term)/(power((1+mRate),Term)-1):mPayment) |
3 |
=A2.news((t=LoanAmt,Term);LoanID, LoanAmt, mPayment:payment, Term, Rate, t* mRate:interest, payment-interest:principal, t=t-principal:principlebalance) |
业务逻辑上 SPL 和 Pandas 几乎一样,但因为语言整体性强,两层循环可以用一个 news 函数实现,也不需要麻烦的类型转换,因此代码大幅简化。
按工龄分组
按员工工龄将员工分组,并统计每组的员工人数,有些组之间有重复。Pandas:#省略员工信息emp的取数过程
def eval_g(dd:dict,ss:str):
return eval(ss,dd)
employed_list=['Within five years','Five to ten years','More than ten years','Over fifteen years']
employed_str_list=["(s<5)","(s>=5) & (s<10)","(s>=10)","(s>=15)"]
today=datetime.datetime.today()
emp['HIREDATE']=pd.to_datetime(emp['HIREDATE'])
employed=((today-emp['HIREDATE'])/np.timedelta64(1,'Y')).apply(math.floor)
emp['EMPLOYED']=employed
dd={'s':emp['EMPLOYED']}
group_cond = []
for n in range(len(employed_str_list)):
emp_g = emp.groupby(eval_g(dd,employed_str_list[n]))
emp_g_index=[index for index in emp_g.size().index]
if True not in emp_g_index:
sum_emp=0
else:
group=emp_g.get_group(True)
sum_emp=len(group)
group_cond.append([employed_list[n],sum_emp])
group_df=pd.DataFrame(group_cond,columns=['EMPLOYED','NUM'])
Pandas 擅长等值分组,也可实现简单的区间枚举分组,遇到本题这种可重复的枚举分组只能硬编码实现,大概过程:循环分组条件,转为等值分组解决问题,处理分组子集,最后合并结果。此外,Pandas 没有计算工龄的函数,也要手工实现。
SPL:
A |
B |
|
1 |
/ 省略员工信息 emp 的取数过程 |
|
2 |
[?<5,?>=5 && ?<10,?>=10,?>=15] |
/ 条件 |
3 |
[Within five years,Five to ten years, More than ten years, Over fifteen years] |
/ 组名 |
4 |
=emp.derive(age(HIREDATE):EMPLOYED) |
/ 计算工龄 |
5 |
=A4.enum@r(A2, EMPLOYED).new(A3(#):EMPLOYED,~.len():NUM) |
/ 枚举分组 |
函数 enum 用于枚举分组,选项 @r 处理重复分组的情况,再配合 SPL 高效的表达能力,整体代码比 Pandas 简短得多。
通过上面的几个例子可以看出来,Pandas 适合简单的数据准备场景,遇到复杂些的结构化数据计算,代码就很难写了。SPL 语言整体性好,无论简单场景还是复杂计算,代码量都不多。
大数据量计算
如果文件或库表的数据量较大(指超出内存,而不是 Big Data),最终都要用循环分段的办法来处理,即:每次读取并计算少量数据,再保留本次计算的中间计算结果,循环结束后合并多个中间计算结果(比如过滤),或对合并结果做二次计算(比如分组汇总)。即使是基本的结构化数据计算,数据量大时也很麻烦,如果涉及关联、归并、并集或综合性计算,代码将更加复杂。
聚合
Pandas:
chunk_data = pd.read_csv("orders.txt",sep="\t",chunksize=100000)
total=0
for chunk in chunk_data:
total+=chunk['amount'].sum()
对于聚合这种简单的大文件计算,Pandas 代码还算简单。打开大文本时,Pandas 提供了一个选项 chunksize,用来指定每次读取的记录数,之后就可以用循环分段的办法处理大文本,每次读入一段并聚合,再将计算结果累加起来。
SPL:
=file("orders.txt").cursor@tc().total(sum('amount'))
SPL 同样采用循环分段的办法处理大文本,但 SPL 封装了代码细节,提供了方便的游标机制,允许用类似处理小数据量的语法,直观地处理较大的数据量,所以代码里看不到循环累加的过程。
过滤
Pandas:
chunk_data = pd.read_csv("d:/orders.txt",sep="\t",chunksize=100000)
chunk_list = []
for chunk in chunk_data:
chunk_list.append(chunk[chunk.state=="New York"])
res = pd.concat(chunk_list)
Pandas 没有提供游标,只能硬编码进行循环分段,每次将部分数据读入内存进行过滤,过滤的结果也存储于内存中。
上面的方法只适合结果集小于内存的场景,如果结果集大于大内存,就要把每次过滤的结果写入文件中,代码变化较大:
chunk_data = pd.read_csv("d:/orders.txt",sep="\t",chunksize=100000)
isNew=True
for chunk in chunk_data:
need_data = chunk[chunk.state=='New York']
if isNew == True:
need_data.to_csv("orders_filter.txt",index=None)
isNew =False
else:
need_data.to_csv("orders_filter.txt",index=None,mode='a',header=None)
首次创建文件和后续追加记录不同,代码细节要小心处理,代码难度显著增加。
SPL:
A |
|
1 |
=file(d:/orders.txt).cursor@tc() |
2 |
=A1.select(state=="New York") |
3 |
=A2.fetch() |
游标机制隐藏了底层细节,解题难度显著降低,代码量显著缩小。不难看出,SPL 语言的整体性较好,因此能够从底层提供游标机制。
结果集大于内存时,只要简单地把 A3 改为:
=file("orders_filter.txt").export@tc(A2)
得益于游标机制,SPL 不必手工区分首次创建文件和后续追加,代码简短得多。
排序
pandas:
def parse_type(s):
if s.isdigit():
return int(s)
try:
res = float(s)
return res
except:
return s
def pos_by(by,head,sep):
by_num = 0
for col in head.split(sep):
if col.strip()==by:
break
else:
by_num+=1
return by_num
def merge_sort(directory,ofile,by,ascending=True,sep=","):
with open(ofile,'w') as outfile:
file_list = os.listdir(directory)
file_chunk = [open(directory+"/"+file,'r') for file in file_list]
k_row = [file_chunk[i].readline()for i in range(len(file_chunk))]
by = pos_by(by,k_row[0],sep)
outfile.write(k_row[0])
k_row = [file_chunk[i].readline()for i in range(len(file_chunk))]
k_by = [parse_type(k_row[i].split(sep)[by].strip())for i in range(len(file_chunk))]
with open(ofile,'a') as outfile:
while True:
for i in range(len(k_by)):
if i >= len(k_by):
break
sorted_k_by = sorted(k_by) if ascending else sorted(k_by,reverse=True)
if k_by[i] == sorted_k_by[0]:
outfile.write(k_row[i])
k_row[i] = file_chunk[i].readline()
if not k_row[i]:
file_chunk[i].close()
del(file_chunk[i])
del(k_row[i])
del(k_by[i])
else:
k_by[i] = parse_type(k_row[i].split(sep)[by].strip())
if len(k_by)==0:
break
def external_sort(file_path,by,ofile,tmp_dir,ascending=True,chunksize=50000,sep=',',usecols=None,index_col=None):
os.makedirs(tmp_dir,exist_ok=True)
try:
data_chunk = pd.read_csv(file_path,sep=sep,usecols=usecols,index_col=index_col,chunksize=chunksize)
for chunk in data_chunk:
chunk = chunk.sort_values(by,ascending=ascending)
chunk.to_csv(tmp_dir+"/"+"chunk"+str(int(time.time()*10**7))+str(uuid.uuid4())+".csv",index=None,sep=sep)
merge_sort(tmp_dir,ofile=ofile,by=by,ascending=ascending,sep=sep)
except Exception:
print(traceback.format_exc())
finally:
shutil.rmtree(tmp_dir, ignore_errors=True)
infile = "D:/orders.txt"
ofile = "D:/extra_sort_res_py.txt"
tmp = "D:/tmp"
external_sort(infile,'amount',ofile,tmp,ascending=True,chunksize=1000000,sep='\t')
将大文件分成多段,每段分别排序,分别写入 N 个临时文件;再打开 N 个临时文件,并维持一个 N 个成员的数组,指向每个临时文件的当前读取位置,初始位置是第一条记录;之后比较该数组对应的 N 条记录,将最小记录 i 写入结果文件,并下移 i 对应的临时文件的当前读取位置;继续比较 N 条记录,直至排序结束。这是大文件排序时常用的归并算法,实现过程比较复杂,Pandas 缺乏方便的游标机制,只能硬编码实现,代码冗长且不易解读。
SPL:
A |
|
1 |
=file("D:/orders.txt").cursor@tc() |
2 |
=A1.sortx(amount) |
3 |
=file("D:/extra_sort_res_py.txt").export@tc(A2) |
上面同样采用归并法实现大文件排序,由于 SPL 支持游标机制,复杂的细节被隐藏起来,只要写出简短的代码就能实现。
大数据量计算还有很多种,比如分组汇总、关联、交集等,很多都比排序复杂,比如分组汇总的第一步通常就是大排序,追求效率就要用更复杂的哈希分堆。Pandas 的语言整体性差,不支持游标,只能硬编码实现这些计算,难度非常大,至于综合性的大数据量计算,基本就不用考虑 Pandas 了。SPL 语言整体性较好,有方便的游标机制,代码都不难写,比如大结果集的分组汇总:
A |
|
1 |
=file(file_path).cursor@tc() |
2 |
=A1.groupx(key;sum(coli):total) |
3 |
=file(out_file).export@tc(A2) |
综合性的,计算每种商品销售额最大的3笔订单:
A |
|
1 |
=file(file_path).cursor@tc() |
2 |
=A1.groups(product;top(3; -amt):three) |
3 |
=A2.conj(three) |
Pandas 提供了丰富的库函数,但因为没有参与 Python 的统一设计,无法获得 Python 的底层支持,导致语言的整体性不佳,只擅长简单的数据准备工作,不适合一般的场景。esProc SPL 的语言整体性较好,结构化数据类型更加专业,可以用简洁直观的代码实现一般的数据准备工作,包括解析不规则的数据源,表达多层数据,进行复杂的结构化数据计算,完成大数据量计算。
英文版