性能优化技巧 - 多层排号键
【摘要】
排号键是 SPL 独特的数据类型,适合替代多层次、各层不连续的键值,比如身份证号、合同编号、产品编号、组织机构代码等。排号键定位速度快,常用于优化内存索引查询和外键关联计算。点击性能优化技巧 - 多层排号键了解详情。
内存索引查询
cardNormal.btx是集文件格式的身份证信息表,数据量一百万条,字段为:cardNo(身份证,主键),name(姓名),gender(性别),province(省份),email(电子邮件),mobile(移动电话),address(住址)。cardK.btx与cardNormal.btx在结构和数据上完全相同,唯一的区别在于cardNo字段是排号键。
本案例对cardNormal.btx和cardK.btx分别执行百万次索引查询,并比较两者性能。
其中cardNo是简化后的身份证,格式如下:
位数 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
规则 |
行政区划 |
生日 |
流水 |
校验 |
||||||||||||
细则 |
省 |
地区 |
年 |
月 |
日 |
流水 |
校验 |
|||||||||
范例 |
1 |
0 |
0 |
3 |
1 |
9 |
8 |
0 |
1 |
2 |
1 |
3 |
0 |
2 |
3 |
x |
省、地区:各自取值范围为1-10。
生日:取值为"1980-06-01"至"1981-01-01"。
流水:取值为1-100。
校验:根据前15位计算出的冗余校验位,取值为0至10,其中10用x来表示。
将上述身份证转为排号键,可采取如下思路:
1. 省、地区:排号键的每一层只支持1-255的整数,因此将省和地区分别转为整数,作为第1、2层排号键。
2. 生日:排号键以1为起始,可以取得更好的性能,因此算出原生日和1980-06-01的间隔天数,作为第3层排号键。
3. 流水:转为整数,作为第4层的排号键。
4. 校验位:冗余数据,可删除。
具体转换脚本如下:
k(int(mid(cardNo,1,2)), int(mid(cardNo,3,2)), interval("1980-06-01",date(mid(cardNo,5,8),"yyyyMMdd")), int(mid(cardNo,13,3)) ) |
下面对cardNormal.btx和cardK.btx分别执行百万次索引查询。
A |
B |
C |
|
1 |
=cardNormal=file("d:\\temp\\cardNormal.btx").import@b().keys(cardNo).index() |
/将cardNormal.btx读入内存 |
|
2 |
=paramList=cardNormal.(cardNo).sort(rand()).to(100000) |
/随机取1万个身份证 |
|
3 |
|||
4 |
=now() |
||
5 |
for 100 |
=paramList.(cardNormal.find(~)) |
/查询百万次 |
6 |
=interval@ms(A4,now()) |
/字符串键性能:5537ms |
|
7 |
|||
8 |
=cardK=file("d:\\temp\\cardk.btx").import@b().keys(cardNo).index@s() |
/将cardk.btx读入内存 |
|
9 |
=paramListK=paramList.(k(int(mid(~,1,2)), int(mid(~,3,2)), interval("1980-06-01",date(mid(~,5,8),"yyyyMMdd")), int(mid(~,13,3)) )) |
/将字符串参数转为排号键参数 |
|
10 |
=now() |
||
11 |
for 100 |
=paramListK.(cardK.find(~)) |
/查询百万次 |
12 |
=interval@ms(A10,now()) |
/排号键性能:1977ms |
A8:对排号键建立内存哈希索引,需使用函数选项@s。
可以看到,对字符串键建立索引,查询需耗费5547毫秒,而排号键只需1977毫秒,后者明显快。
外键关联查询
taxNormal.btx是集文件格式的报税信息表,数据量一千万条,字段为:serial(主键,流水号),cardNo(外键,身份证),tax(报税额),area(所属地区),declaretype(申报类型),unit(申报单位),declareTime(申报时间),network(办理网点)。taxK.btx 与taxNormal.btx在结构和数据上完全相同,唯一的区别在于cardNo字段是排号键。
本案例算法:
1. 对taxNormal.btx和cardNormal.btx进行外键关联计算,排除操作系统缓存和硬盘IO的影响,只取关联动作消耗的时间。
2. 对taxK.btx和cardK.btx进行外键关联计算,排除操作系统缓存和硬盘IO的影响,只取关联动作消耗的时间。
3. 比较1和2的差异。
具体算法如下:
A |
B |
C |
|
1 |
=file("d:\\temp\\taxNormal.btx").cursor@b() |
for A1,10000 |
/打开报税表,预遍历游标 |
2 |
=A1.reset() |
/重置游标到起点 |
|
3 |
=file("d:\\temp\\cardNormal.btx").import@b().keys(cardNo).index() |
/打开身份证表 |
|
4 |
=now() |
||
5 |
for A1,10000 |
/正式遍历游标 |
|
6 |
=interval@ms(A4,now()) |
=A1.reset() |
/遍历游标耗时3748ms |
7 |
=A1.switch(cardNo,A3:cardNo) |
for A1,10000 |
/建立关联,预遍历游标 |
8 |
=A1.reset() |
/重置游标到起点 |
|
9 |
=now() |
||
10 |
for A7,10000 |
/正式遍历关联游标 |
|
11 |
=interval@ms(A9,now()) |
=A11-A6 |
/ 建立关联耗时:7553ms |
12 |
/上面:字符串键关联。下面:排号键关联 |
||
13 |
=file("d:\\temp\\taxK.btx").cursor@b() |
for A13,10000 |
/打开报税表,预遍历游标 |
14 |
=A13.reset() |
/重置游标到起点 |
|
15 |
=file("d:\\temp\\cardK.btx").import@b().keys(cardNo).index@s() |
/打开身份证表 |
|
16 |
=now() |
||
17 |
for A13,10000 |
/正式遍历游标 |
|
18 |
=interval@ms(A16,now()) |
=A13.reset() |
/遍历游标耗时2884ms |
19 |
=A13.switch(cardNo,A15:cardNo) |
for A19,10000 |
/建立关联,预遍历游标 |
20 |
=A19.reset() |
/重置游标到起点 |
|
21 |
=now() |
||
22 |
for A19,10000 |
/正式遍历关联游标 |
|
23 |
=interval@ms(A21,now()) |
=A23-A18 |
/建立关联耗时:966ms |
B2、B7、B13、B19:预遍历游标,避免操作系统缓存的影响。遍历之后需用reset函数重置游标,以便后续再次遍历。
B11、B23:用总时间减去遍历时间,获得关联动作消耗的时间。
可以看到,用普通键做外键关联计算,其关联动作耗时7553ms;排号键做外键关联计算时,只需耗时966ms,后者明显快。而且可以看出,使用排号键读出记录(fetch)的时间也少于使用字符串(其它字段和记录行数都相同),说明排号键对象的生成性能更好。
英文版